Sie sind hier: Startseite » Markt » Tipps und Hinweise

Optimale Wissensspeicher


Vier Kriterien für die Auswahl der richtigen Graphdatenbank
Die Cloud-Verfügbarkeit vereinfacht das Bereitstellen und Skalieren von Datenbanken


Graphdatenbanken sind leistungsstarke Werkzeuge, um komplexe Daten-Beziehungen darzustellen und vernetzte Informationen schnell zu analysieren. Doch jeder Datenbanktyp hat spezifische Eigenschaften und eignet sich für andere Anwendungsfälle. Welche Graphdatenbank ist also wann die richtige? Aerospike empfiehlt Unternehmen, ihre Anforderungen unter vier Gesichtspunkten zu prüfen.

Graphdatenbanken haben sich als äußerst leistungsfähige Lösungen für viele Anwendungsfälle etabliert. Mit ihnen lassen sich vernetzte, strukturierte und unstrukturierte Daten schnell verarbeiten, analysieren und darstellen. Noch mehr an Bedeutung gewinnen Graphdatenbanken durch die Verbreitung von Künstlicher Intelligenz (KI) und Machine Learning (ML). Denn Graphdatenbanken sind optimale Wissensspeicher für Systeme, die mit Retrieval-Augmented Generation (RAG) arbeiten. Zudem vereinfacht die Cloud-Verfügbarkeit das Bereitstellen und Skalieren von Datenbanken. Doch die Hersteller bieten eine ganze Reihe unterschiedlicher Datenbanktypen und Datenmodelle für Graphen. Der Realtime-Datenbankanbieterin Aerospike empfiehlt daher, bei der Auswahl auf die folgenden vier Faktoren zu achten.

1. Analytischer oder operativer Anwendungsfall
Die wichtigste Frage zu Projektbeginn: Soll die Graphdatenbank analytische oder operative Anwendungsfälle unterstützen? Analytische und operative Graphen sind zwei unterschiedliche Ansätze, die beide spezifische Einsatzgebiete und Anforderungen bedienen. Analytische Graphen sind darauf ausgelegt, komplexe Datenanalysen durchzuführen und Muster in Datensätzen zu erkennen; sie nutzen daher häufig Online Analytical Processing (OLAP).

Einsatzgebiete sind Business Intelligence und Data Science, wo sie Analysen als Basis für strategische Entscheidungen liefern. Wissensgraphen, Datenexploration und -visualisierung zur Identifizierung komplexer Muster oder Netzwerkanalysen zur Optimierung von Datenflüssen sind typische Anwendungsfälle. Analytische Graphen eignen sich hervorragend, wenn das Datenvolumen ein Terabyte nicht übersteigt, Abfragen weniger zeitkritisch sind und nur eine begrenzte Anzahl gleichzeitiger User zugreift.

Operative Graphen sind hingegen für dynamische, transaktionale Umgebungen und für Echtzeitanwendungen konzipiert. Beispiele sind Identitätsabgleich in Werbe- und Marketingtechnologien, Echtzeit-Betrugserkennung im Bankwesen oder personalisierte Angebote in E-Commerce-Anwendungen. All diese Anwendungen erfordern eine sehr geringe Latenz im Bereich von Millisekunden, die Anzahl der gleichzeitigen Benutzer kann in die Tausende oder Millionen gehen und es sind strenge Service-Level-Vereinbarungen wie beispielsweise eine Verfügbarkeit von 99,999 Prozent einzuhalten. Daher verwenden operative Graphen Online Transaction Processing (OLTP), was schnelle Lese-, Schreib- und Aktualisierungsvorgänge ermöglicht.

2. LPG- oder RDF-Datenmodell
Graphdatenbanken zählen zu den NoSQL-Datenbanken und unterscheiden sich zunächst im Datenmodell – Labeled Property Graph (LPG) oder Resource Description Framework (RDF). RDF stellt Daten in Form von Tripeln dar, die sich aus Subjekt, Prädikat und Objekt zusammensetzen. Das RDF-Datenmodell ist standardisiert und damit unflexibler bei der Daten-Modellierung als LPG.

LPG-Modelle organisieren die Daten in Form von Knoten und Kanten. Sowohl Knoten als auch Kanten können über Eigenschaften näher beschrieben werden. Das LPG-Datenmodell ermöglicht eine agile Datenmodellierung. Neue Beziehungen und Knoten lassen sich hinzufügen, ohne die bestehende Struktur zu ändern. Die meisten Unternehmen werden sich daher für eine Graph-Anwendung basierend auf dem LPG-Modell entscheiden.

3. Prozedurale oder deskriptive Abfragesprache
Um komplexe Datenmuster zu durchsuchen und den kürzesten Pfad zwischen Knoten zu ermitteln, verwenden Graphdatenbanken spezielle Abfragesprachen. LPG-Modelle nutzen Cypher, Gremlin oder GQL (Graph Query Language). Letztere wurde Anfang 2024 zum internationalen ISO-Standard erklärt. Die Standardabfragesprache für RDF-Modelle ist SPARQL.

Gremlin, Teil des TinkerPop-Frameworks, ist als Open-Source-Sprache anbieterunabhängig und nutzt einen prozeduralen Ansatz. Sie erfordert daher ein tiefes Verständnis von Aufbau und Verteilung der Daten. Cypher, ebenfalls seit kurzem als Open-Source verfügbar, GQL und SPARQL sind deskriptive und daher SQL-ähnliche Abfragesprachen.

Während eine prozedurale Abfragesprache Entwicklern mehr Kontrolle über den Ausführungsprozess ermöglicht, ist eine deskriptive Abfragesprache für viele einfacher zu erlernen und anzuwenden.

4. Performance und Skalierbarkeit
Graphdatenbanken speichern Datenbeziehungen effizient und führen komplexe Datenbankabfragen sehr schnell aus. Dennoch variieren Performance und Skalierbarkeit je nach Datenbank-Anbieter. "Einige Datenbanken verwenden In-Memory-Funktionen, die für eine Performance von weniger als einer Millisekunde und maximale Speichereffizienz sorgen. Mit zunehmendem Datenvolumen sind In-Memory-Systeme jedoch häufig überlastet, worunter die Skalierbarkeit leidet", erklärt Evan Cummack, CPO bei Aerospike.

Ein Single-Instance-System ist einfacher zu verwalten und zu konfigurieren, schränkt jedoch die Skalierbarkeit ein. Für wachsende Datenmengen oder zukünftig mehr User-Anfragen ist eine verteilte Graphdatenbank besser geeignet.

Bei verteilten Instanzen können allerdings Multi-Hop-Abfragen zu einer Herausforderung für die Skalierung werden. Vor allem native Graphdatenbanken lösen dies durch indexfreie Adjazenz. Dabei speichern sie direkte Verweise zwischen Knoten, um schnell zwischen verwandten Entitäten zu navigieren. Abfragen werden so noch effizienter und schneller. Allerdings steigt dabei der Speicherbedarf, abhängig von der Dichte der Graphen und der Anzahl der Beziehungen. Und wenn die Datenmengen den verfügbaren Speicherplatz übersteigen, sinkt die Leistung sofort rapide.

Indexfreie Adjazenz ist nicht skalierbar und funktioniert daher nur bei kleineren Datensätzen wirklich gut. Andere Datenbanken verwenden stattdessen Mechanismen wie Indizes, die sich positiv auf Performance und Effizienz auswirken können.

Fazit
Bei der Entscheidung für eine Graphdatenbank sollten Unternehmen vorab ihre spezifischen Anforderungen sowie die vorhandene Infrastruktur und Wachstumspläne sorgfältig prüfen. Vor allem der Anwendungsfall ist entscheidend. Denn jede Art von Graphdatenbank ist für einen bestimmten Zweck konzipiert.
Darüber hinaus haben Unternehmen die Wahl zwischen nativen und Multimodell-Graphdatenbanken. Während native Graphdatenbanken ausschließlich für die Verarbeitung von Graphen optimiert sind, unterstützen Multimodell-Datenbanken verschiedene Datenmodelle und sind daher flexibler, wenn es um künftige Anforderungen geht. (Aerospike: ra)

eingetragen: 23.12.24
Newsletterlauf: 14.03.25

Aerospike: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Meldungen: Tipps und Hinweise

  • Integration von Cloud-Infrastrukturen

    Cloud-Technologien werden zum Schlüsselfaktor für Wachstum und verbesserte Skalierbarkeit über das Kerngeschäft hinaus - auch bei Telekommunikationsanbietern (Telcos). Auch hier ist der Wandel zur Nutzung von Produkten und Dienstleistungen "On-Demand" im vollen Gange, sodass Telcos ihre Geschäftsmodelle weiterentwickeln und zunehmend als Managed-Service-Provider (MSPs) und Cloud-Service-Provider (CSPs) auftreten.

  • Acht Einsatzszenarien für Industrial AI

    Artificial Intelligence (AI) entwickelt sich zunehmend zur Schlüsselressource für die Wettbewerbsfähigkeit der deutschen Industrie. Doch wie weit ist die Branche wirklich? Laut einer aktuellen Bitkom-Befragung setzen bereits 42?Prozent der Industrieunternehmen des verarbeitenden Gewerbes in Deutschland AI in ihrer Produktion ein - ein weiteres Drittel (35?Prozent) plant entsprechende Projekte.

  • Ausfallkosten nur Spitze des Eisbergs

    Ungeplante Ausfälle in Rechenzentren sind seltener geworden, doch wenn sie eintreten, können sie verheerende Folgen haben. Laut der Uptime Institute Studie 2023 meldeten 55 Prozent der Betreiber in den vorangegangenen drei Jahren mindestens einen Ausfall - jeder zehnte davon war schwerwiegend oder kritisch. Zu den Ursachen gehören unter anderem Wartungsmängel, die sich mit einer strukturierten Instandhaltungsstrategie vermeiden lassen.

  • GenAI mächtig, aber nicht immer notwendig

    Jetzt auf den Hype rund um KI-Agenten aufzuspringen, klingt gerade in Zeiten des Fachkräftemangels für Unternehmen verlockend. Doch nicht alles, was glänzt, ist Gold. Viele Unternehmen investieren gerade in smarte Assistenten, Chatbots und Voicebots - allerdings scheitern einige dieser Projekte, ehe sie richtig begonnen haben: Schlecht umgesetzte KI-Agenten sorgen eher für Frust als für Effizienz, sowohl bei Kunden als auch bei den eigenen Mitarbeitern. Dabei werden immer wieder die gleichen Fehler gemacht. Besonders die folgenden drei sind leicht zu vermeiden.

  • Konsequent auf die Cloud setzen

    In der sich stetig wandelnden digitalen Welt reicht es nicht aus, mit den neuesten Technologien nur Schritt zu halten - Unternehmen müssen proaktiv handeln, um Innovationsführer zu werden. Entsprechend der neuen Studie "Driving Business Outcomes through Cost-Optimised Innovation" von SoftwareOne können Unternehmen, die gezielt ihre IT-Kosten optimieren, deutlich besser Innovationen vorantreiben und ihre Rentabilität sowie Markteinführungsgeschwindigkeit verbessern.

  • Fünf Mythen über Managed Services

    Managed Services sind ein Erfolgsmodell. Trotzdem existieren nach wie vor einige Vorbehalte gegenüber externen IT-Services. Der IT-Dienstleister CGI beschreibt die fünf hartnäckigsten Mythen und erklärt, warum diese längst überholt sind.

  • Datenschutz als Sammelbegriff

    Die Cloud hat sich längst zu einem neuen IT-Standard entwickelt. Ihr Einsatz bringt allerdings neue Herausforderungen mit sich - insbesondere im Hinblick auf geopolitische Risiken und die Gefahr einseitiger Abhängigkeiten. Klar ist: Unternehmen, Behörden und Betreiber kritischer Infrastrukturen benötigen eine kompromisslose Datensouveränität. Materna Virtual Solution zeigt, welche zentralen Komponenten dabei entscheidend sind.

  • Google Workspace trifft Microsoft 365

    Die Anforderungen an den digitalen Arbeitsplatz wachsen ständig. Wie können Unternehmen mit der Zeit gehen, ohne auf Sicherheit verzichten zu müssen? Eine Antwort könnte sein, Google Workspace an die Seite der Microsoft-365-Umgebung zu stellen. Welche Möglichkeiten eröffnet diese Kombination?

  • NIS2 trifft auf SaaS-Infrastruktur

    Die NIS2 (Network Information Security Directive)-Richtlinie zur Sicherheit von Netzwerken setzt neue Maßstäbe für die Cybersicherheit. Sie ist bekanntlich für öffentliche und private Einrichtungen in 18 Sektoren bindend, die entweder mindestens 50 Beschäftigte haben oder einen Jahresumsatz und eine Jahresbilanz von mindestens 10 Millionen Euro.

  • Sicher modernisieren & Daten schützen

    Viele Unternehmen haben die Cloud-Migration ihrer SAP-Landschaften lange Zeit aufgeschoben. ERP-Anwendungslandschaften, sind über viele Jahre hinweg gewachsen, die Verflechtungen vielfältig, die Datenmengen enorm und die Abhängigkeit der Business Continuity von diesen Systemen gigantisch. Dennoch: Der Druck zur ERP-Modernisierung steigt und viele Unternehmen werden 2025 das Projekt Cloud-Migration mit RISE with SAP angehen.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen