Sie sind hier: Startseite » Markt » Tipps und Hinweise

Unternehmensweite Gen-AI-Projekte


Viele Unternehmen haben ihre Daten noch nicht für KI vorzubereitet
Unternehmen, die beim Einsatz von generativer KI zögern, sollten ihr Handeln überdenken


Laut der AWS-Umfrage verwenden etwa 45 Prozent der Unternehmen Gen-AI-Tools, um den Kundensupport zu verbessern, hauptsächlich durch den Einsatz von Chatbots. Zwischen 35 Prozent und 40 Prozent dieser Führungskräfte geben auch an, dass ihre Unternehmen diese Tools nutzen, um die persönliche Produktivität zu steigern oder die Softwareentwicklung zu beschleunigen (in Form von Code-Assistenten), und weitere 32 Prozent für Vertrieb und Marketing (für personalisierte Kampagnen und Angebote).

11 Prozent der Unternehmen geben an, dass sie unternehmensweite Gen-AI-Projekte pilotieren. 16 Prozent berichten, dass sie den Einsatz generativer KI durch Mitarbeiter sogar verboten haben.

Diese niedrigen Zahlen überraschen nicht. Viele Unternehmen haben ihre Daten noch nicht für KI vorzubereitet. Das Hochladen ihrer Daten in öffentlich zugängliche Modelle wie ChatGPT birgt Risiken; und nur wenige Unternehmen verfügen über interne Data-Science-Ressourcen, um ihre eigenen Gen-AI-Modelle zu erstellen.

Wie in fast allen Fällen, in denen eine beliebte neue Technologie den Arbeitsplatz erreicht, beginnt dies mit einzelnen Teammitgliedern. Einzelpersonen haben damit angefangen, Smartphones bei der Arbeit zu verwenden, lange bevor Arbeitgeber Richtlinien für mobile Geräte veröffentlichten. Bei GenAI ist die Entwicklung ähnlich. Manche Teammitglieder gehen voran und nutzen öffentlich zugänglichen Tools wie Google Bard, um manuelle Aufgaben zu automatisieren und ihre Produktivität zu verbessern.

Schlechte Datenqualität
Im Idealfall nutzen Unternehmen proprietäre Daten dazu, um ein großes Sprachmodell (LLM) wie Llama, OpenLM oder Mistral zu verfeinern. So können sie damit Aufgaben ausführen, die speziell auf die Bedürfnisse ihre zugeschnitten sind, etwa Kreditanträge bewerten, oder Unterbrechungen der Lieferkette vorhersagen.

Unternehmen können auch ein proprietäres LLM mit seinen eigenen domänenspezifischen Daten erstellen und trainieren. Dieser Prozess ist allerdings teuer, kann Jahre dauern und erfordert interne Datenwissenschaftler. Die Partnerschaft mit einem großen LLM-Anbieter ist eine weitere Option, um dasselbe zu erreichen. In beiden Fällen sind die meisten Unternehmen dazu nicht annähernd in der Lage, da ihre eigenen Daten nicht für anspruchsvolle KI-Anwendungen bereit sind.

Eine umfassende Datenstrategie ist für die Nutzung von KI allerdings entscheidend. Trotzdem leisten nur wenige Unternehmen die erforderliche Vorarbeit, um ihre Daten für die Einbindung in LLMs vorzubereiten. Zu den grundlegenden Schritten gehören:
>> Aufbrechen von Datensilos
>> Integration oder Sammlung von Daten zum Trainieren der KI
>> Sicherstellen, dass die Daten den grundlegenden Qualitätsstandards entsprechen

Risikoaversion
Unternehmen, die beim Einsatz von generativer KI zögern, sollten ihr Handeln überdenken. Schließlich werden Führungskräfte, die sich der KI mit einer experimentierfreudigen und innovativen Haltung nähern, langfristig am meisten Erfolg haben. Skeptische Anwender von Gen-AI-Tools haben häufig Angst, durch die Technologie ersetzt zu werden. Die Möglichkeiten der KI sind jedoch kein Ersatz, sondern vielmehr eine Hilfe für Teams. Dadurch wird KI immer mehr zu einem unverzichtbaren Werkzeug für international operierende Unternehmen. Wichtig ist allerdings, das richtige Maß und die passenden Tools für die jeweiligen Aufgaben zu finden. (Freshworks: ra)

eingetragen: 20.08.24
Newsletterlauf: 26.09.24

Freshworks: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Meldungen: Tipps und Hinweise

  • Mythos der maßgeschneiderten Entwicklung

    Der gezielte und flexible Einsatz von Technologie ist ein zentraler Erfolgsfaktor für Unternehmen. Digitalisierung ist für viele Unternehmen weiterhin eine Priorität, der sie eine substantielle Menge an Ausgaben einräumen: Einem Bericht des IDC zufolge, werden die weltweiten Investitionen in IT-Transformationsinitiativen voraussichtlich 4 Billionen US-Dollar bis 2027 übersteigen. Jedoch erreichen weniger als die Hälfte (48?Prozent) aller Digitalisierungsprojekte die angestrebten Ziele. Laut McKinsey scheitern sogar sieben von zehn Unternehmenstransformationen.

  • Migration in lokale Cloud-Rechenzentren

    Digitale Souveränität in und mit der Cloud - dafür sind Unternehmen gefordert, die entscheidenden Weichen zu stellen. Aus der Projekterfahrung von Yorizon, Vorreiterin für Open Source Edge-Cloud-Services, sind es fünf entscheidende Faktoren, die eine unabhängige und zukunftsfähige Cloud-Strategie sicherstellen.

  • Agentische KI im Retail-Bereich

    KI revolutioniert wie wir Ideen und Produkte entwickeln, Handel treiben und Informationen sammeln. Die menschliche Genialität bekommt dabei einen Kompagnon: die KI. Doch obwohl die generative KI häufig den größten Hype erzeugt, wird es die agentische KI sein, die Händlern den größten Nutzen bringt.

  • IT-Resilienz als Überlebensfaktor

    Angesichts der vom Bundesamt für Sicherheit in der Informationstechnik als "besorgniserregend" eingestuften Cybersicherheitslage gewinnen automatisierte Ansätze für die Stärkung der IT-Resilienz zunehmend an Bedeutung, wie aktuelle Implementierungen zeigen.

  • Backup-Lücke von Microsoft 365

    Unternehmen nutzen Microsoft 365 als Grundlage für ihre Produktivität. Doch neben den Vorteilen solcher Produktivitätsplattformen wird immer wieder eine Lücke in der Datenschutzstrategie übersehen: das Prinzip der geteilten Verantwortung. Diese Nachlässigkeit setzt wichtige Geschäftsinformationen erheblichen Risiken aus, die sich in Ausfallzeiten und wirtschaftlichen Verlusten niederschlagen können.

  • KI und digitale Souveränität

    Die europaweite Debatte rund um digitale Souveränität fokussiert sich in den vergangenen Wochen überwiegend auf das Thema "KI" (AI-Gigafactory etc.). Dabei gerät ein anderer Aspekt gerade etwas in den Hintergrund: Cyberresilienz und die Kontrolle über kritische Daten innerhalb Europas.

  • DMS und digitale Souveränität

    Die Welt ordnet sich neu und Europa steht unter wachsendem Druck, seine digitale Unabhängigkeit zu stärken. Laut einer Bitkom-Studie (2025) fordern 84 Prozent der Unternehmen, dass die neue Bundesregierung der digitalen Souveränität höchste Priorität einräumt. Gerade im Umgang mit vertraulichen Dokumenten und geschäftskritischen Informationen zeigt sich, wie entscheidend die Kontrolle über digitale Prozesse ist. Die easy software AG beleuchtet, welche Rolle das Dokumentenmanagement dabei spielt - und worauf es jetzt ankommt.

  • MDR - meist mehr Schein als Sein

    Managed Detection and Response (MDR) ist der neue Hype der IT-Sicherheitsbranche. Kaum ein Systemhaus, das nicht plötzlich MDR im Portfolio hat. Was sich hinter diesem Label verbirgt, ist oft enttäuschend: vollautomatisierte EDR- oder XDR-Lösungen mit dem Etikett "Managed", das in Wahrheit kaum mehr bedeutet, als dass ein Dienstleister Herstellerlösungen lizenziert - nicht aber selbst Verantwortung übernimmt.

  • Einblicke in die Sichtweise der Kunden

    Online-Händler erhalten täglich eine unzählige Menge an Anfragen. Ein Großteil davon wird mit KI-Agenten gelöst, da sie immer wieder ähnliche Themen wie Lieferzeiten, Rücksendungen oder Produktspezifikationen betreffen. Zum einen sind KI-Agenten damit eine Arbeitserleichterung bei wiederkehrenden Anfragen, besonders wenn diese Lösungen einfach zu bedienen sind, und den Unternehmen schnellen Mehrwert bieten. Doch hinter diesen Wiederholungen verbirgt sich zum anderen auch eine bislang oft ungenutzte Quelle strategischer Erkenntnisse: die Daten, die bei jeder einzelnen Interaktion entstehen.

  • Modernisierung birgt auch ein Risiko

    Der Trend zur Cloud-Migration setzt Vermögensverwalter zunehmend unter Druck, ihre digitale Transformation voranzutreiben. Einer der strategischen Pfeiler einer Cloud-Strategie ist dabei der Wechsel von On-Premise- zu SaaS-Lösungen. Für größere, traditionelle Institutionen stellt sich jedoch die Frage: Sollten sie direkt auf SaaS umsteigen oder lieber einen mehrstufigen Ansatz über PaaS wählen? Alberto Cuccu, COO von Objectway, erklärt, warum ein schrittweiser Migrationsprozess für bestimmte Geschäftsfälle eine sinnvolle Option sein kann, welche Rolle DORA dabei spielt und welche typischen Fehler Banken bei ihrer IT-Transformation machen.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen