Sie sind hier: Startseite » Markt » Tipps und Hinweise

Was Unternehmen beachten müssen


Cloud der Gamechanger für generative KI: Fünf Gründe, warum die Cloud für generative KI unverzichtbar ist
Wie Cloud-Services GenAI-Projekte schneller, skalierbarer und sicherer machen


Künstliche Intelligenz gehört für immer mehr Unternehmen ganz selbstverständlich zum Geschäftsalltag dazu. Insbesondere die generative KI (GenAI) erlebt einen Boom, den sich viele so nicht vorstellen konnten. GenAI-Modelle sind jedoch enorm ressourcenhungrig, sodass sich Firmen Gedanken über die Infrastruktur machen müssen. NTT DATA, ein weltweit führender Anbieter von digitalen Business- und Technologie-Services, zeigt, warum die Cloud der Gamechanger für generative KI ist.

Wie vielfältig und gleichzeitig weit verbreitet der Einsatz von generativer KI in Zukunft sein wird, zeigen Untersuchungen von Gartner. So gehen die Analysten beispielsweise davon aus, dass im Jahr 2025 mehr als 30 Prozent der neuen Medikamente mit Hilfe von GenAI-Techniken entwickelt werden. Ebenso hoch soll der Anteil von Marketingbotschaften und personalisierter Werbung sein, die mit generativer KI erstellt werden. GenAI ist aber auch ein nützliches Werkzeug, um in der Fertigung Designs zu entwickeln, die in Bezug auf Leistung, Materialien und Herstellungsverfahren optimiert sind.

Anspruchsvolle Anwendungsfälle erfordern jedoch viel Rechenleistung und verlangen ein hohes Maß an IT-Sicherheit. Hier kann die Cloud aus Sicht von NTT DATA in fünf Punkten überzeugen – wenn Unternehmen einige Aspekte beachten.

>> Skalierbare Infrastruktur für die massive Rechenleistung. GenAI-Modelle sind bekannt für ihre Größe und Komplexität, die Modelle umfassen oft Milliarden von Parametern und setzen entsprechend hohe Rechenressourcen voraus. Diese Anforderungen übersteigen in der Regel die Systemkapazitäten von firmeneigenen Rechenzentren, während Cloud-Anbieter auf Skalierbarkeit und High-Performance Computing ausgelegt sind. Die Cloud bietet Zugriff auf GPU- und TPU-Cluster sowie spezialisierte KI-Infrastrukturen, die die Rechenlast dynamisch verteilen und skalieren können. Dies reduziert sowohl die Entwicklungszeit als auch die Betriebskosten erheblich und ermöglicht es Unternehmen, GenAI-Anwendungen auch ohne eigene Hochleistungsinfrastruktur effizient zu betreiben.

>> Größtmögliche Modularität. Die Implementierung von GenAI in monolithische Legacy-Applikationen stellt vor allem aufgrund der starren Architektur dieser Anwendungen eine große Herausforderung dar. Hier spielen die API-Architektur (Application Programming Interface) und die Modularität von Cloud-nativen Anwendungen ihre Stärken aus. Beides zusammen erleichtert die Integration von GenAI in bestehende Systeme. Dank der API-Architektur können Unternehmen Ökosysteme aus Anwendungen erstellen, die modular und wiederverwendbar sind, was die Entwicklung und Anpassung von GenAI deutlich beschleunigt. Gleichzeitig sorgt die modulare Architektur für mehr Flexibilität und Anpassungsfähigkeit, so dass Unternehmen schnell auf neue Anforderungen reagieren und innovative Funktionen implementieren können – ein entscheidender Vorteil in der dynamischen Welt der Künstlichen Intelligenz.

>> Effizientes und flexibles Datenmanagement. Eine der größten Herausforderungen bei GenAI-Projekten ist die Verwaltung und Integration großer Datenmengen. Cloud-Plattformen bieten hier entscheidende Vorteile: Sie ermöglichen eine zentrale Datenspeicherung und den Zugriff auf skalierbare Datenbanken, die Informationen in Echtzeit aggregieren und bereitstellen können. Dies erleichtert nicht nur die gemeinsame Nutzung von Informationen über Teams und Standorte hinweg, sondern erhöht beim Einsatz entsprechender Security-Tools auch die Datensicherheit. Darüber hinaus unterstützen Cloud-Anbieter flexible Speicherlösungen, die sowohl strukturierte als auch unstrukturierte Daten verwalten können – ein Muss für die vielseitigen Datensätze, mit denen GenAI arbeitet.

>> Überschaubare Investitionen. Mit der Cloud sparen sich Unternehmen die hohen Kosten für eine eigene KI-Infrastruktur und "konsumieren" Ressourcen nach Bedarf. Die Pay-per-Use-Modelle der Anbieter ermöglichen eine hohe Flexibilität, indem Ressourcen dynamisch an Lastspitzen und schwankende Workloads angepasst werden. Allerdings bedeutet die Nutzung der Cloud nicht automatisch Kosteneffizienz: Unternehmen müssen sorgfältig planen und genau definieren, welche Services und Ressourcen sie für ihre GenAI-Anwendungen benötigen, um unnötige Ausgaben zu vermeiden. Ohne eine klare Bedarfsanalyse kann das Kostenmanagement in der Cloud schnell unübersichtlich werden, insbesondere bei rechenintensiven GenAI-Anwendungen. Nur durch eine strategische Planung und kontinuierliches Monitoring lassen sich die Kostenvorteile der Cloud voll ausschöpfen und eine wirtschaftliche Nutzung sicherstellen.

>> Zugang zu modernsten Technologien. Viele Cloud-Anbieter bieten inzwischen spezialisierte Services für maschinelles Lernen und Künstliche Intelligenz an, die eine End-to-End-Umgebung für die Entwicklung, das Training und den Einsatz von GenAI-Modellen bereitstellen. Über diese Plattformen haben Entwickler Zugriff auf benutzerfreundliche Werkzeuge, die die Modelloptimierung, das Hyperparameter-Tuning und die Integration vortrainierter Modelle erheblich vereinfachen. Funktionen wie automatisiertes maschinelles Lernen (AutoML) verkürzen die Entwicklungszeit und reduzieren den Bedarf an Spezialwissen. Gleichzeitig schützen fortschrittliche Sicherheitsmaßnahmen die Daten vor unberechtigtem Zugriff und Angriffen. Allerdings ist nicht jede Cloud für die Verarbeitung sensibler Informationen geeignet. Eine Public-Cloud-Umgebung bietet zwar Standard-Sicherheitsfunktionen, erfüllt aber in der Regel nicht die spezifischen Compliance-Richtlinien in regulierten Branchen. Hier kann der Einsatz hybrider oder privater Cloud-Lösungen ein Weg sein, um sowohl die Vorteile der Cloud zu nutzen als auch die hohen Sicherheits- und Compliance-Standards zu erfüllen.

"Die Cloud ist entscheidend für den Erfolg von generativer KI, aber die Wahl des richtigen Anbieters und der richtigen Services darf kein Schnellschuss sein. Unternehmen, die ihre GenAI-Projekte erfolgreich skalieren und gleichzeitig ihre digitale Souveränität wahren wollen, kommen um eine sorgfältig geplante Cloud-Strategie nicht herum", erklärt William Cobbah, Head of Data & Intelligence bei NTT Data DACH. "Die Zusammenarbeit mit einem kompetenten Service-Provider ermöglicht es Unternehmen, zunächst die eigene GenAI-Fähigkeit zu evaluieren und dann über das weitere Vorgehen zu entscheiden. Er leistet wichtige Vorarbeit in Form von Machbarkeitsanalysen, Roadmaps und Strategieberatung. Der Dienstleister hilft aber auch, die Implementierungs- und Nutzungsanforderungen zu verstehen und herauszufinden, welche Art von Cloud die richtige ist." (NTT Data: ra)

eingetragen: 26.05.25

NTT Data Deutschland: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Meldungen: Tipps und Hinweise

  • Mythos der maßgeschneiderten Entwicklung

    Der gezielte und flexible Einsatz von Technologie ist ein zentraler Erfolgsfaktor für Unternehmen. Digitalisierung ist für viele Unternehmen weiterhin eine Priorität, der sie eine substantielle Menge an Ausgaben einräumen: Einem Bericht des IDC zufolge, werden die weltweiten Investitionen in IT-Transformationsinitiativen voraussichtlich 4 Billionen US-Dollar bis 2027 übersteigen. Jedoch erreichen weniger als die Hälfte (48?Prozent) aller Digitalisierungsprojekte die angestrebten Ziele. Laut McKinsey scheitern sogar sieben von zehn Unternehmenstransformationen.

  • Migration in lokale Cloud-Rechenzentren

    Digitale Souveränität in und mit der Cloud - dafür sind Unternehmen gefordert, die entscheidenden Weichen zu stellen. Aus der Projekterfahrung von Yorizon, Vorreiterin für Open Source Edge-Cloud-Services, sind es fünf entscheidende Faktoren, die eine unabhängige und zukunftsfähige Cloud-Strategie sicherstellen.

  • Agentische KI im Retail-Bereich

    KI revolutioniert wie wir Ideen und Produkte entwickeln, Handel treiben und Informationen sammeln. Die menschliche Genialität bekommt dabei einen Kompagnon: die KI. Doch obwohl die generative KI häufig den größten Hype erzeugt, wird es die agentische KI sein, die Händlern den größten Nutzen bringt.

  • IT-Resilienz als Überlebensfaktor

    Angesichts der vom Bundesamt für Sicherheit in der Informationstechnik als "besorgniserregend" eingestuften Cybersicherheitslage gewinnen automatisierte Ansätze für die Stärkung der IT-Resilienz zunehmend an Bedeutung, wie aktuelle Implementierungen zeigen.

  • Backup-Lücke von Microsoft 365

    Unternehmen nutzen Microsoft 365 als Grundlage für ihre Produktivität. Doch neben den Vorteilen solcher Produktivitätsplattformen wird immer wieder eine Lücke in der Datenschutzstrategie übersehen: das Prinzip der geteilten Verantwortung. Diese Nachlässigkeit setzt wichtige Geschäftsinformationen erheblichen Risiken aus, die sich in Ausfallzeiten und wirtschaftlichen Verlusten niederschlagen können.

  • KI und digitale Souveränität

    Die europaweite Debatte rund um digitale Souveränität fokussiert sich in den vergangenen Wochen überwiegend auf das Thema "KI" (AI-Gigafactory etc.). Dabei gerät ein anderer Aspekt gerade etwas in den Hintergrund: Cyberresilienz und die Kontrolle über kritische Daten innerhalb Europas.

  • DMS und digitale Souveränität

    Die Welt ordnet sich neu und Europa steht unter wachsendem Druck, seine digitale Unabhängigkeit zu stärken. Laut einer Bitkom-Studie (2025) fordern 84 Prozent der Unternehmen, dass die neue Bundesregierung der digitalen Souveränität höchste Priorität einräumt. Gerade im Umgang mit vertraulichen Dokumenten und geschäftskritischen Informationen zeigt sich, wie entscheidend die Kontrolle über digitale Prozesse ist. Die easy software AG beleuchtet, welche Rolle das Dokumentenmanagement dabei spielt - und worauf es jetzt ankommt.

  • MDR - meist mehr Schein als Sein

    Managed Detection and Response (MDR) ist der neue Hype der IT-Sicherheitsbranche. Kaum ein Systemhaus, das nicht plötzlich MDR im Portfolio hat. Was sich hinter diesem Label verbirgt, ist oft enttäuschend: vollautomatisierte EDR- oder XDR-Lösungen mit dem Etikett "Managed", das in Wahrheit kaum mehr bedeutet, als dass ein Dienstleister Herstellerlösungen lizenziert - nicht aber selbst Verantwortung übernimmt.

  • Einblicke in die Sichtweise der Kunden

    Online-Händler erhalten täglich eine unzählige Menge an Anfragen. Ein Großteil davon wird mit KI-Agenten gelöst, da sie immer wieder ähnliche Themen wie Lieferzeiten, Rücksendungen oder Produktspezifikationen betreffen. Zum einen sind KI-Agenten damit eine Arbeitserleichterung bei wiederkehrenden Anfragen, besonders wenn diese Lösungen einfach zu bedienen sind, und den Unternehmen schnellen Mehrwert bieten. Doch hinter diesen Wiederholungen verbirgt sich zum anderen auch eine bislang oft ungenutzte Quelle strategischer Erkenntnisse: die Daten, die bei jeder einzelnen Interaktion entstehen.

  • Modernisierung birgt auch ein Risiko

    Der Trend zur Cloud-Migration setzt Vermögensverwalter zunehmend unter Druck, ihre digitale Transformation voranzutreiben. Einer der strategischen Pfeiler einer Cloud-Strategie ist dabei der Wechsel von On-Premise- zu SaaS-Lösungen. Für größere, traditionelle Institutionen stellt sich jedoch die Frage: Sollten sie direkt auf SaaS umsteigen oder lieber einen mehrstufigen Ansatz über PaaS wählen? Alberto Cuccu, COO von Objectway, erklärt, warum ein schrittweiser Migrationsprozess für bestimmte Geschäftsfälle eine sinnvolle Option sein kann, welche Rolle DORA dabei spielt und welche typischen Fehler Banken bei ihrer IT-Transformation machen.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen