Sie sind hier: Startseite » Markt » Tipps und Hinweise

Was Unternehmen beachten müssen


Cloud der Gamechanger für generative KI: Fünf Gründe, warum die Cloud für generative KI unverzichtbar ist
Wie Cloud-Services GenAI-Projekte schneller, skalierbarer und sicherer machen


Künstliche Intelligenz gehört für immer mehr Unternehmen ganz selbstverständlich zum Geschäftsalltag dazu. Insbesondere die generative KI (GenAI) erlebt einen Boom, den sich viele so nicht vorstellen konnten. GenAI-Modelle sind jedoch enorm ressourcenhungrig, sodass sich Firmen Gedanken über die Infrastruktur machen müssen. NTT DATA, ein weltweit führender Anbieter von digitalen Business- und Technologie-Services, zeigt, warum die Cloud der Gamechanger für generative KI ist.

Wie vielfältig und gleichzeitig weit verbreitet der Einsatz von generativer KI in Zukunft sein wird, zeigen Untersuchungen von Gartner. So gehen die Analysten beispielsweise davon aus, dass im Jahr 2025 mehr als 30 Prozent der neuen Medikamente mit Hilfe von GenAI-Techniken entwickelt werden. Ebenso hoch soll der Anteil von Marketingbotschaften und personalisierter Werbung sein, die mit generativer KI erstellt werden. GenAI ist aber auch ein nützliches Werkzeug, um in der Fertigung Designs zu entwickeln, die in Bezug auf Leistung, Materialien und Herstellungsverfahren optimiert sind.

Anspruchsvolle Anwendungsfälle erfordern jedoch viel Rechenleistung und verlangen ein hohes Maß an IT-Sicherheit. Hier kann die Cloud aus Sicht von NTT DATA in fünf Punkten überzeugen – wenn Unternehmen einige Aspekte beachten.

>> Skalierbare Infrastruktur für die massive Rechenleistung. GenAI-Modelle sind bekannt für ihre Größe und Komplexität, die Modelle umfassen oft Milliarden von Parametern und setzen entsprechend hohe Rechenressourcen voraus. Diese Anforderungen übersteigen in der Regel die Systemkapazitäten von firmeneigenen Rechenzentren, während Cloud-Anbieter auf Skalierbarkeit und High-Performance Computing ausgelegt sind. Die Cloud bietet Zugriff auf GPU- und TPU-Cluster sowie spezialisierte KI-Infrastrukturen, die die Rechenlast dynamisch verteilen und skalieren können. Dies reduziert sowohl die Entwicklungszeit als auch die Betriebskosten erheblich und ermöglicht es Unternehmen, GenAI-Anwendungen auch ohne eigene Hochleistungsinfrastruktur effizient zu betreiben.

>> Größtmögliche Modularität. Die Implementierung von GenAI in monolithische Legacy-Applikationen stellt vor allem aufgrund der starren Architektur dieser Anwendungen eine große Herausforderung dar. Hier spielen die API-Architektur (Application Programming Interface) und die Modularität von Cloud-nativen Anwendungen ihre Stärken aus. Beides zusammen erleichtert die Integration von GenAI in bestehende Systeme. Dank der API-Architektur können Unternehmen Ökosysteme aus Anwendungen erstellen, die modular und wiederverwendbar sind, was die Entwicklung und Anpassung von GenAI deutlich beschleunigt. Gleichzeitig sorgt die modulare Architektur für mehr Flexibilität und Anpassungsfähigkeit, so dass Unternehmen schnell auf neue Anforderungen reagieren und innovative Funktionen implementieren können – ein entscheidender Vorteil in der dynamischen Welt der Künstlichen Intelligenz.

>> Effizientes und flexibles Datenmanagement. Eine der größten Herausforderungen bei GenAI-Projekten ist die Verwaltung und Integration großer Datenmengen. Cloud-Plattformen bieten hier entscheidende Vorteile: Sie ermöglichen eine zentrale Datenspeicherung und den Zugriff auf skalierbare Datenbanken, die Informationen in Echtzeit aggregieren und bereitstellen können. Dies erleichtert nicht nur die gemeinsame Nutzung von Informationen über Teams und Standorte hinweg, sondern erhöht beim Einsatz entsprechender Security-Tools auch die Datensicherheit. Darüber hinaus unterstützen Cloud-Anbieter flexible Speicherlösungen, die sowohl strukturierte als auch unstrukturierte Daten verwalten können – ein Muss für die vielseitigen Datensätze, mit denen GenAI arbeitet.

>> Überschaubare Investitionen. Mit der Cloud sparen sich Unternehmen die hohen Kosten für eine eigene KI-Infrastruktur und "konsumieren" Ressourcen nach Bedarf. Die Pay-per-Use-Modelle der Anbieter ermöglichen eine hohe Flexibilität, indem Ressourcen dynamisch an Lastspitzen und schwankende Workloads angepasst werden. Allerdings bedeutet die Nutzung der Cloud nicht automatisch Kosteneffizienz: Unternehmen müssen sorgfältig planen und genau definieren, welche Services und Ressourcen sie für ihre GenAI-Anwendungen benötigen, um unnötige Ausgaben zu vermeiden. Ohne eine klare Bedarfsanalyse kann das Kostenmanagement in der Cloud schnell unübersichtlich werden, insbesondere bei rechenintensiven GenAI-Anwendungen. Nur durch eine strategische Planung und kontinuierliches Monitoring lassen sich die Kostenvorteile der Cloud voll ausschöpfen und eine wirtschaftliche Nutzung sicherstellen.

>> Zugang zu modernsten Technologien. Viele Cloud-Anbieter bieten inzwischen spezialisierte Services für maschinelles Lernen und Künstliche Intelligenz an, die eine End-to-End-Umgebung für die Entwicklung, das Training und den Einsatz von GenAI-Modellen bereitstellen. Über diese Plattformen haben Entwickler Zugriff auf benutzerfreundliche Werkzeuge, die die Modelloptimierung, das Hyperparameter-Tuning und die Integration vortrainierter Modelle erheblich vereinfachen. Funktionen wie automatisiertes maschinelles Lernen (AutoML) verkürzen die Entwicklungszeit und reduzieren den Bedarf an Spezialwissen. Gleichzeitig schützen fortschrittliche Sicherheitsmaßnahmen die Daten vor unberechtigtem Zugriff und Angriffen. Allerdings ist nicht jede Cloud für die Verarbeitung sensibler Informationen geeignet. Eine Public-Cloud-Umgebung bietet zwar Standard-Sicherheitsfunktionen, erfüllt aber in der Regel nicht die spezifischen Compliance-Richtlinien in regulierten Branchen. Hier kann der Einsatz hybrider oder privater Cloud-Lösungen ein Weg sein, um sowohl die Vorteile der Cloud zu nutzen als auch die hohen Sicherheits- und Compliance-Standards zu erfüllen.

"Die Cloud ist entscheidend für den Erfolg von generativer KI, aber die Wahl des richtigen Anbieters und der richtigen Services darf kein Schnellschuss sein. Unternehmen, die ihre GenAI-Projekte erfolgreich skalieren und gleichzeitig ihre digitale Souveränität wahren wollen, kommen um eine sorgfältig geplante Cloud-Strategie nicht herum", erklärt William Cobbah, Head of Data & Intelligence bei NTT Data DACH. "Die Zusammenarbeit mit einem kompetenten Service-Provider ermöglicht es Unternehmen, zunächst die eigene GenAI-Fähigkeit zu evaluieren und dann über das weitere Vorgehen zu entscheiden. Er leistet wichtige Vorarbeit in Form von Machbarkeitsanalysen, Roadmaps und Strategieberatung. Der Dienstleister hilft aber auch, die Implementierungs- und Nutzungsanforderungen zu verstehen und herauszufinden, welche Art von Cloud die richtige ist." (NTT Data: ra)

eingetragen: 26.05.25

NTT Data Deutschland: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Meldungen: Tipps und Hinweise

  • Wie sich Teamarbeit im KI-Zeitalter verändert

    Liefertermine wackeln, Teams arbeiten unter Dauerlast, Know-how verschwindet in der Rente: In vielen Industrieunternehmen gehört der Ausnahmezustand zum Betriebsalltag. Gleichzeitig soll die Zusammenarbeit in Produktion, Qualitätskontrolle und Wartung immer schneller, präziser und vernetzter werden. Wie das KI-gestützt gelingen kann, zeigt der Softwarehersteller Augmentir an sechs konkreten Praxisbeispielen.

  • Vom Workaround zum Schatten-Account

    Um Aufgaben im Arbeitsalltag schneller und effektiver zu erfüllen, ist die Suche nach Abkürzungen Gang und Gebe. In Kombination mit dem technologischen Fortschritt erreicht die Effizienz menschlicher Arbeit so immer neue Höhen und das bringt Unternehmen unwissentlich in eine Zwickmühle: Die zwischen Sicherheit und Produktivität. Wenn ein Mitarbeiter einen Weg findet, seine Arbeit schneller oder besser zu erledigen, die Bearbeitung von Zugriffsanfragen durch die IT-Abteilung aber zu lange dauert oder zu kompliziert ist, dann finden Mitarbeiter oftmals "kreative" Lösungen, um trotzdem weiterarbeiten zu können. Diese "Workarounds" entstehen selten aus böser Absicht. Allerdings stellen sie gravierende Sicherheitslücken dar, denen sich viele Beschäftigte und Führungskräfte nicht bewusst sind.

  • KI in der Cloud sicher nutzen

    Keine Technologie hat die menschliche Arbeit so schnell und weitreichend verändert wie Künstliche Intelligenz. Dabei gibt es bei der Integration in Unternehmensprozesse derzeit keine Tür, die man KI-basierter Technologie nicht aufhält. Mit einer wachsenden Anzahl von KI-Agenten, LLMs und KI-basierter Software gibt es für jedes Problem einen Anwendungsfall. Die Cloud ist mit ihrer immensen Rechenleistung und Skalierbarkeit ein Motor dieser Veränderung und Grundlage für die KI-Bereitstellung.

  • Clever skalieren auf Basis bestehender Strukturen

    Da Generative AI zunehmend Teil unseres Alltags wird, befinden wir uns in einer KI-Phase, die sich durch außerordentliche Fähigkeiten und enormen Konsum auszeichnet. Was anfangs auf einer theoretischen Ebene stattgefunden hat, ist inzwischen messbar - und zwar bis zur kleinsten Einheit. Aktuelle Untersuchungen von Mistral AI und Google deuten darauf hin, dass die Folgen einer einzigen Interaktion vernachlässigbar sind: Bruchteile eines Watts, einige Tropfen Wasser und ein Kohlenstoffausstoß, der etwa dem entspricht, was beim Streamen eines Videos unter einer Minute verbraucht wird.

  • Von Cloud-First zu Cloud-Smart

    Die zunehmende Vernetzung von IT- und OT-Systemen bedeutet für die Fertigungsindustrie neue Sicherheitsrisiken. Ein moderner Cloud-Smart-Ansatz verbindet Innovation mit effektiven Sicherheitslösungen, um diesen Herausforderungen gerecht zu werden. Die industrielle Digitalisierung stellt die Fertigungsindustrie heute vor neue Herausforderungen - insbesondere in puncto Sicherheit.

  • Technik statt Vertrauen

    Die andauernden Turbulenzen in den USA seit Amtsantritt von Donald Trump, die konsequente Kürzung von Mitteln für Datenschutz und die Kontrolle staatlicher Überwachungsprogramme verdeutlichen: Wer als Behörde oder Institution höchste Datensicherheit garantieren muss, kann nicht auf US-amerikanische Unternehmen oder deren europäische Töchter setzen.

  • Risiko von SaaS-zu-SaaS-Integrationen

    Ein SaaS-Sicherheitsalbtraum für IT-Manager in aller Welt wurde kürzlich wahr: Hacker nutzten legitime OAuth-Tokens aus der Drift-Chatbot-Integration von Salesloft mit Salesforce, um unbemerkt Kundendaten von der beliebten CRM-Plattform zu exfiltrieren. Der ausgeklügelte Angriff deckt einen kritischen toten Winkel auf, von dem die meisten Sicherheits-Teams nicht einmal wissen, dass sie von ihm betroffen sind.

  • Kostenfallen erkennen und vermeiden

    Remote Work, Cloud Computing und mobile Endgeräte haben die Arbeitswelt grundlegend verändert. Mitarbeiter erwarten heute, von überall aus auf ihre Anwendungen und Daten zugreifen zu können. Virtuelle Desktop-Lösungen machen diese Flexibilität möglich, indem sie Desktop-Umgebungen und Anwendungen über das Netzwerk eines Unternehmens bereitstellen. Doch der Markt für solche Lösungen ist komplex und vielfältig. IT-Entscheider stehen vor der Herausforderung, aus dem Angebot die passende Lösung zu identifizieren, die sowohl technische Anforderungen als auch wirtschaftliche Ziele erfüllt.

  • Übergang in die neue Systemlandschaft

    Der Umstieg auf SAP S/4HANA ist bei vielen Unternehmen bereits in vollem Gange oder steht unmittelbar bevor. Wer in diesem Zusammenhang seine Archivierungsstrategie überdenkt, kann wertvolle Zeit, Kosten und Aufwand sparen. Die Archivierungsexperten von kgs haben zehn zentrale Aspekte zusammengestellt, die dabei helfen, den Übergang in die neue Systemlandschaft effizient und zukunftssicher zu gestalten.

  • Die Zukunft braucht offene KI-Infrastrukturen

    KI ist mehr als ein ominöses Hinterzimmer-Experiment. Die Technologie ist eine treibende Kraft, wenn es um Produkte, Entscheidungen und Nutzererfahrungen über jegliche Wirtschaftsbereiche hinaus geht. Mittlerweile stellen Unternehmen jedoch die Inferenz in den Mittelpunkt ihrer KI-Implementierungen. Hier können die Modelle ihren eigentlichen Mehrwert unter Beweis stellen - unter anderem in Form von Antworten auf drängende Fragen, Vorhersagen und Content-Generierung. Der Anstieg des Inferenz-Bedarfs bringt jedoch eine entscheidende Herausforderung mit sich. Bei Inferenzen handelt es sich nämlich nicht um einzelne Workloads.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen