Sie sind hier: Startseite » Markt » Tipps und Hinweise

Acht Einsatzszenarien für Industrial AI


Wo Industrial AI echten Mehrwert schafft
In der Fertigung erkennt Industrial AI ineffiziente Prozesse und Engpässe frühzeitig


Artificial Intelligence (AI) entwickelt sich zunehmend zur Schlüsselressource für die Wettbewerbsfähigkeit der deutschen Industrie. Doch wie weit ist die Branche wirklich? Laut einer aktuellen Bitkom-Befragung setzen bereits 42 Prozent der Industrieunternehmen des verarbeitenden Gewerbes in Deutschland AI in ihrer Produktion ein – ein weiteres Drittel (35 Prozent) plant entsprechende Projekte.

Ein ähnliches Bild ergibt sich aus einer zweiten, vor kurzem erschienenen Studie des VDMA, die speziell auf den Maschinen- und Anlagenbau und auf den Einsatz von GenAI im DACH-Raum blickt. Hier zeigt sich: 79 Prozent der Unternehmen nutzen bereits GenAI oder planen den Einsatz aktiv. 89 Prozent sehen in der Technologie einen entscheidenden Hebel für künftige Rentabilität.

Top-8-Einsatzszenarien für Industrial AI
Was bislang oft fehlt, ist ein klarer Fokus auf die wirklich wirksamen Anwendungen. Laut Bitkom geben 42 Prozent der Industrieunternehmen an, dass ihnen das nötige Know-how fehlt, um AI sinnvoll in bestehende Prozesse zu integrieren. Rund die Hälfte wartet zudem ab, welche Erfahrungen andere Unternehmen machen – ein deutliches Zeichen für Unsicherheit und fehlendes Vertrauen bei der praktischen Umsetzung. Doch Industrial AI kann überall dort zum Einsatz kommen, wo Daten fließen, Entscheidungen getroffen werden und Prozesse ineinandergreifen – also entlang der gesamten industriellen Wertschöpfungskette. Die folgenden Top-8-Einsatzszenarien zeigen, in welchen Bereichen Unternehmen durch den gezielten Einsatz von AI bereits heute konkrete wirtschaftliche Effekte erzielen – und wo die Hebel für zukünftige Wertschöpfung liegen:

1. Datenqualität und -verständnis verbessern: Eine saubere, konsistente Datenbasis ist die Grundlage für jede AI-Anwendung. AI-Technologien erkennen und bereinigen fehlerhafte, doppelte oder unvollständige Datensätze – strukturiert wie unstrukturiert. Auf dieser Basis ermöglichen Analyse- und Visualisierungs_Tools ein tiefes Verständnis der Datenlandschaft. Muster, Anomalien und Schwachstellen lassen sich in Echtzeit erkennen, was Transparenz schafft und fundierte Entscheidungen über Abteilungen hinweg fördert.

2. Bestandsoptimierung und Materialplanung: AI-gestützte Systeme analysieren historische Verbrauchsdaten und identifizieren saisonale Trends sowie Nachfrageschwankungen. So lassen sich Wiederbeschaffungszyklen und Bestellmengen besser planen – Überbestände und Engpässe werden reduziert. Das Ergebnis: niedrigere Lagerkosten, höhere Versorgungssicherheit und bessere Liquidität.

3. Produktionsoptimierung: In der Fertigung erkennt Industrial AI ineffiziente Prozesse und Engpässe frühzeitig. Durch die Analyse von Maschinendaten, Auslastung und Taktzeiten lassen sich Durchlaufzeiten verkürzen und die Ressourcennutzung verbessern. AI-gestützte Dashboards konsolidieren relevante Produktionsdaten und ermöglichen es Mitarbeitenden, gezielt zu reagieren – für mehr Flexibilität, weniger Stillstand und eine gesteigerte Produktqualität.

4. Lieferperformance: Eine stabile Supply Chain ist nur so gut wie ihre Vorhersagbarkeit. Industrial AI hilft dabei, Störungen entlang der Lieferkette frühzeitig zu erkennen und Maßnahmen proaktiv einzuleiten. Die Systeme analysieren Echtzeitdaten aus Logistik, Beschaffung und Partnernetzwerken und unterstützen bei der Kapazitätsplanung. Das verbessert die Liefertreue, reduziert Verspätungen und stärkt die Resilienz der Lieferkette insgesamt

5. Dynamisches Supply Chain Monitoring: AI analysiert in Echtzeit nicht nur interne Daten, sondern auch unstrukturierte externe Informationen – etwa aus Newsfeeds, Wetterdaten oder sozialen Medien. Dadurch lassen sich Nachfrageschwankungen, Transportprobleme oder geopolitische Risiken frühzeitig erkennen. Handlungsempfehlungen können automatisch in die Planung einfließen.

6. Vorausschauende Wartung (Predictive Maintenance): Industrial AI kann anhand von Maschinendaten (zum Beispiel Temperaturen, Laufzeiten) frühzeitig Anzeichen für Verschleiß oder Ausfälle erkennen. So lassen sich Wartungen zustandsabhängig und effizient planen – Ausfallzeiten und ungeplante Stillstände werden minimiert, die Lebensdauer von Anlagen verlängert. Besonders in der Fertigung ist das ein entscheidender Produktivitätsfaktor.

7. CO₂-Fußabdruck analysieren: Mit Industrial AI lassen sich Umweltwirkungen entlang der Wertschöpfungskette in Echtzeit analysieren und steuern – etwa durch die Auswertung von Energie- und Ressourcendaten. Unternehmen können so Emissionen sichtbar machen, Einsparpotenziale identifizieren und fundierte Nachhaltigkeitsentscheidungen treffen. Dazu zählen die datengestützte Berechnung von CO₂-Fußabdrücken, das Erkennen von Energieverbrauchern und die Optimierung einzelner Prozessschritte – von regulatorischer Sicherheit bis zur verbesserten Außenwirkung.

8. Intelligenter Kundenservice: Standardanfragen wie Rücksendungen oder Lieferstatus lassen sich automatisiert bearbeiten, während Natural Language Processing (NLP) Kundenanliegen versteht, kategorisiert und an die richtigen Stellen weiterleitet. Die Bearbeitungszeit sinkt, die Präzision steigt. Zudem ermöglicht AI personalisierte Empfehlungen und proaktiven Service, der Kundenbedürfnisse frühzeitig erkennt – ein klarer Wettbewerbsvorteil in serviceintensiven Märkten.

"Die aktuellen Studien von Bitkom und VDMA zeigen: Nur wer über erste Pilotprojekte hinausgeht und AI gezielt dort einsetzt, wo sie echten Mehrwert stiftet, wird langfristig profitieren", so Christoph Kull, President Business Applications bei Proalpha. "Industrial AI bietet genau diese Möglichkeit: Sie verknüpft Datenintelligenz mit operativer Exzellenz – von der Lieferkette über die Produktion bis hin zur Nachhaltigkeit. Die hier dargestellten Anwendungsfelder zeigen, wie Unternehmen bereits heute produktiver, resilienter und zukunftsfähiger werden können. Entscheidend ist jetzt, ins Handeln zu kommen – gezielt, integriert und mit einem klaren Blick auf den konkreten Nutzen." (Proalpha Group: ra)

eingetragen: 28.04.25

proAlpha: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Meldungen: Tipps und Hinweise

  • Mythos der maßgeschneiderten Entwicklung

    Der gezielte und flexible Einsatz von Technologie ist ein zentraler Erfolgsfaktor für Unternehmen. Digitalisierung ist für viele Unternehmen weiterhin eine Priorität, der sie eine substantielle Menge an Ausgaben einräumen: Einem Bericht des IDC zufolge, werden die weltweiten Investitionen in IT-Transformationsinitiativen voraussichtlich 4 Billionen US-Dollar bis 2027 übersteigen. Jedoch erreichen weniger als die Hälfte (48?Prozent) aller Digitalisierungsprojekte die angestrebten Ziele. Laut McKinsey scheitern sogar sieben von zehn Unternehmenstransformationen.

  • Migration in lokale Cloud-Rechenzentren

    Digitale Souveränität in und mit der Cloud - dafür sind Unternehmen gefordert, die entscheidenden Weichen zu stellen. Aus der Projekterfahrung von Yorizon, Vorreiterin für Open Source Edge-Cloud-Services, sind es fünf entscheidende Faktoren, die eine unabhängige und zukunftsfähige Cloud-Strategie sicherstellen.

  • Agentische KI im Retail-Bereich

    KI revolutioniert wie wir Ideen und Produkte entwickeln, Handel treiben und Informationen sammeln. Die menschliche Genialität bekommt dabei einen Kompagnon: die KI. Doch obwohl die generative KI häufig den größten Hype erzeugt, wird es die agentische KI sein, die Händlern den größten Nutzen bringt.

  • IT-Resilienz als Überlebensfaktor

    Angesichts der vom Bundesamt für Sicherheit in der Informationstechnik als "besorgniserregend" eingestuften Cybersicherheitslage gewinnen automatisierte Ansätze für die Stärkung der IT-Resilienz zunehmend an Bedeutung, wie aktuelle Implementierungen zeigen.

  • Backup-Lücke von Microsoft 365

    Unternehmen nutzen Microsoft 365 als Grundlage für ihre Produktivität. Doch neben den Vorteilen solcher Produktivitätsplattformen wird immer wieder eine Lücke in der Datenschutzstrategie übersehen: das Prinzip der geteilten Verantwortung. Diese Nachlässigkeit setzt wichtige Geschäftsinformationen erheblichen Risiken aus, die sich in Ausfallzeiten und wirtschaftlichen Verlusten niederschlagen können.

  • KI und digitale Souveränität

    Die europaweite Debatte rund um digitale Souveränität fokussiert sich in den vergangenen Wochen überwiegend auf das Thema "KI" (AI-Gigafactory etc.). Dabei gerät ein anderer Aspekt gerade etwas in den Hintergrund: Cyberresilienz und die Kontrolle über kritische Daten innerhalb Europas.

  • DMS und digitale Souveränität

    Die Welt ordnet sich neu und Europa steht unter wachsendem Druck, seine digitale Unabhängigkeit zu stärken. Laut einer Bitkom-Studie (2025) fordern 84 Prozent der Unternehmen, dass die neue Bundesregierung der digitalen Souveränität höchste Priorität einräumt. Gerade im Umgang mit vertraulichen Dokumenten und geschäftskritischen Informationen zeigt sich, wie entscheidend die Kontrolle über digitale Prozesse ist. Die easy software AG beleuchtet, welche Rolle das Dokumentenmanagement dabei spielt - und worauf es jetzt ankommt.

  • MDR - meist mehr Schein als Sein

    Managed Detection and Response (MDR) ist der neue Hype der IT-Sicherheitsbranche. Kaum ein Systemhaus, das nicht plötzlich MDR im Portfolio hat. Was sich hinter diesem Label verbirgt, ist oft enttäuschend: vollautomatisierte EDR- oder XDR-Lösungen mit dem Etikett "Managed", das in Wahrheit kaum mehr bedeutet, als dass ein Dienstleister Herstellerlösungen lizenziert - nicht aber selbst Verantwortung übernimmt.

  • Einblicke in die Sichtweise der Kunden

    Online-Händler erhalten täglich eine unzählige Menge an Anfragen. Ein Großteil davon wird mit KI-Agenten gelöst, da sie immer wieder ähnliche Themen wie Lieferzeiten, Rücksendungen oder Produktspezifikationen betreffen. Zum einen sind KI-Agenten damit eine Arbeitserleichterung bei wiederkehrenden Anfragen, besonders wenn diese Lösungen einfach zu bedienen sind, und den Unternehmen schnellen Mehrwert bieten. Doch hinter diesen Wiederholungen verbirgt sich zum anderen auch eine bislang oft ungenutzte Quelle strategischer Erkenntnisse: die Daten, die bei jeder einzelnen Interaktion entstehen.

  • Modernisierung birgt auch ein Risiko

    Der Trend zur Cloud-Migration setzt Vermögensverwalter zunehmend unter Druck, ihre digitale Transformation voranzutreiben. Einer der strategischen Pfeiler einer Cloud-Strategie ist dabei der Wechsel von On-Premise- zu SaaS-Lösungen. Für größere, traditionelle Institutionen stellt sich jedoch die Frage: Sollten sie direkt auf SaaS umsteigen oder lieber einen mehrstufigen Ansatz über PaaS wählen? Alberto Cuccu, COO von Objectway, erklärt, warum ein schrittweiser Migrationsprozess für bestimmte Geschäftsfälle eine sinnvolle Option sein kann, welche Rolle DORA dabei spielt und welche typischen Fehler Banken bei ihrer IT-Transformation machen.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen